3-Fibonacci Polynomials in The Family of Fibonacci Numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibonacci numbers and orthogonal polynomials

We prove that the sequence (1/Fn+2)n≥0 of reciprocals of the Fibonacci numbers is a moment sequence of a certain discrete probability, and we identify the orthogonal polynomials as little q-Jacobi polynomials with q = (1− √ 5)/(1+ √ 5). We prove that the corresponding kernel polynomials have integer coefficients, and from this we deduce that the inverse of the corresponding Hankel matrices (1/F...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Distribution of the Fibonacci numbers modulo 3

For any modulus m ≥ 2 and residue b (mod m) (we always assume 1 ≤ b ≤ m), denote by ν(m, b) the frequency of b as a residue in one period of the sequence {Fn (mod m)}. It was proved that ν(5k, b) = 4 for each b (mod 5k) and each k ≥ 1 by Niederreiter in 1972 [7]. Jacobson determined ν(2k, b) for k ≥ 1 and ν(2k5j , b) for k ≥ 5 and j ≥ 0 in 1992 [6]. Some other results in this area can be found ...

متن کامل

-̂fibonacci Polynomials

Let MC be the monoid of all Morse code sequences of dots a(:=®) and dashes b(: = -) with respect to concatenation. MC consists of all words in a and b. Let P be the algebra of all polynomials HveMCK ^h r e a l coefficients. We are interested in: a) polynomials in P which we call abstract Fibonacci polynomials. They are defined by the recursion Fn(a, b) = aF^a, b) + bFn_2(a, b) with initial valu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi

سال: 2019

ISSN: 1307-9085

DOI: 10.18185/erzifbed.512100